Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
J Neurosci ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627088

RESUMO

The lateral intraparietal area (LIP) plays a crucial role in target selection and attention in primates, but the laminar microcircuitry of this region is largely unknown. To address this, we used ultra-high density laminar electrophysiology with Neuropixels probes to record neural activity in the posterior parietal cortex (PPC) of two adult marmosets while they performed a simple visual target selection task. Our results reveal neural correlates of visual target selection in the marmoset, similar to those observed in macaques and humans, with distinct timing and profiles of activity across cell types and cortical layers. Notably, a greater proportion of neurons exhibited stimulus related activity in superficial layers whereas a greater proportion of infragranular neurons exhibited significant post-saccadic activity. Stimulus-related activity was first observed in granular layer putative interneurons, whereas target discrimination activity emerged first in supragranular layers putative pyramidal neurons, supporting a canonical laminar circuit underlying visual target selection in marmoset PPC. These findings provide novel insights into the neural basis of visual attention and target selection in primates.Significance Statement The lateral intraparietal area (LIP) is a critical cortical region for target selection and spatial attention. The microcircuitry of this region remains poorly understood as in the macaque, the most prevalent model, it is embedded within a sulcus and is inaccessible to laminar electrophysiological techniques. The common marmoset however is a promising alternative model due to its lissencephalic cortex and homologous frontoparietal network. Here, we conducted ultra-high density laminar electrophysiology in area LIP of marmosets performing a visual target selection task. We observed interlaminar dynamics consistent with previous observations of a canonical circuit in primary visual cortex and proposed models for the frontal eye fields, extending the concept of a canonical circuit to primate association cortex.

2.
Commun Biol ; 7(1): 317, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480875

RESUMO

Primate communication relies on multimodal cues, such as vision and audition, to facilitate the exchange of intentions, enable social interactions, avoid predators, and foster group cohesion during daily activities. Understanding the integration of facial and vocal signals is pivotal to comprehend social interaction. In this study, we acquire whole-brain ultra-high field (9.4 T) fMRI data from awake marmosets (Callithrix jacchus) to explore brain responses to unimodal and combined facial and vocal stimuli. Our findings reveal that the multisensory condition not only intensifies activations in the occipito-temporal face patches and auditory voice patches but also engages a more extensive network that includes additional parietal, prefrontal and cingulate areas, compared to the summed responses of the unimodal conditions. By uncovering the neural network underlying multisensory audiovisual integration in marmosets, this study highlights the efficiency and adaptability of the marmoset brain in processing facial and vocal social signals, providing significant insights into primate social communication.


Assuntos
Callithrix , Imageamento por Ressonância Magnética , Animais , Callithrix/fisiologia , Visão Ocular , Mapeamento Encefálico , Percepção Auditiva/fisiologia
3.
Nat Neurosci ; 27(3): 547-560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238431

RESUMO

The mammalian cerebral cortex is anatomically organized into a six-layer motif. It is currently unknown whether a corresponding laminar motif of neuronal activity patterns exists across the cortex. Here we report such a motif in the power of local field potentials (LFPs). Using laminar probes, we recorded LFPs from 14 cortical areas across the cortical hierarchy in five macaque monkeys. The laminar locations of recordings were histologically identified by electrolytic lesions. Across all areas, we found a ubiquitous spectrolaminar pattern characterized by an increasing deep-to-superficial layer gradient of high-frequency power peaking in layers 2/3 and an increasing superficial-to-deep gradient of alpha-beta power peaking in layers 5/6. Laminar recordings from additional species showed that the spectrolaminar pattern is highly preserved among primates-macaque, marmoset and human-but more dissimilar in mouse. Our results suggest the existence of a canonical layer-based and frequency-based mechanism for cortical computation.


Assuntos
Córtex Cerebral , Macaca , Humanos , Animais , Camundongos , Neurônios/fisiologia , Mamíferos
4.
STAR Protoc ; 4(4): 102586, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37738120

RESUMO

The common marmoset (Callithrix jacchus) is gaining attention in the field of cognitive neuroscience. The development of an effective protocol for fMRI data acquisition in awake marmosets is a key factor in developing reliable comparative studies. Here, we describe a protocol to obtain fMRI data in awake marmosets using auditory and visual stimulation. We describe steps for surgical and anesthesia procedures, MRI training, and positioning the marmosets within an MRI-compatible body restraint. We then detail fMRI scanning and preprocessing of functional images. For complete details on the use and execution of this protocol, please refer to Jafari et al. (2023).1.

5.
Elife ; 122023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449983

RESUMO

Theory of Mind (ToM) refers to the cognitive ability to attribute mental states to other individuals. This ability extends even to the attribution of mental states to animations featuring simple geometric shapes, such as the Frith-Happé animations in which two triangles move either purposelessly (Random condition), exhibit purely physical movement (Goal-directed condition), or move as if one triangle is reacting to the other triangle's mental states (ToM condition). While this capacity in humans has been thoroughly established, research on nonhuman primates has yielded inconsistent results. This study explored how marmosets (Callithrix jacchus), a highly social primate species, process Frith-Happé animations by examining gaze patterns and brain activations of marmosets and humans as they observed these animations. We revealed that both marmosets and humans exhibited longer fixations on one of the triangles in ToM animations, compared to other conditions. However, we did not observe the same pattern of longer overall fixation duration on the ToM animations in marmosets as identified in humans. Furthermore, our findings reveal that both species activated extensive and comparable brain networks when viewing ToM versus Random animations, suggesting that marmosets differentiate between these scenarios similarly to humans. While marmosets did not mimic human overall fixation patterns, their gaze behavior and neural activations indicate a distinction between ToM and non-ToM scenarios. This study expands our understanding of nonhuman primate cognitive abilities, shedding light on potential similarities and differences in ToM processing between marmosets and humans.


In our daily life, we often guess what other people are thinking or intending to do, based on their actions. This ability to ascribe thoughts, intentions or feelings to others is known as Theory of Mind. While we often use our Theory of Mind to understand other humans and interpret social interactions, we can also apply our Theory of Mind to assign feelings and thoughts to animals and even inanimate objects. For example, people watching a movie where the characters are represented by simple shapes, such as triangles, can still see a story unfold, because they infer the triangles' intentions based on what they see on the screen. While it is clear that humans have a Theory of Mind, how the brain manages this capacity and whether other species have similar abilities remain open questions. Dureux et al. used animations showing abstract shapes engaging in social interactions and advanced brain imaging techniques to compare how humans and marmosets ­ a type of monkey that is very social and engages in shared childcare ­ interpret social cues. By comparing the eye movements and brain activity of marmosets to human responses, Dureux et al. wanted to uncover common strategies used by both species to understand social signals, and gain insight into how these strategies have evolved. Dureux et al. found that, like humans, marmosets seem to perceive a difference between shapes interacting socially and moving randomly. Not only did their gaze linger longer on certain shapes in the social scenario, but their brain activity also mirrored that of humans viewing the same scenes. This suggests that, like humans, marmosets possess an inherent ability to interpret social scenarios, even when they are presented in an abstract form, providing a fresh perspective on primates' abilities to interpret social cues. The findings of Dureux et al. have broad implications for our understanding of human social behavior and could lead to the development of better communication strategies, especially for individuals social cognitive conditions, such as Autism Spectrum Disorder. However, further research will be needed to understand the neural processes underpinning the interpretation of social interactions. Dureux et al.'s research indicates that the marmoset monkey may be the ideal organism to perform this research on.


Assuntos
Callithrix , Teoria da Mente , Humanos , Animais , Encéfalo , Cognição , Movimento
6.
Cell Rep ; 42(5): 112526, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37195863

RESUMO

Vocalizations play an important role in the daily life of primates and likely form the basis of human language. Functional imaging studies have demonstrated that listening to voices activates a fronto-temporal voice perception network in human participants. Here, we acquired whole-brain ultrahigh-field (9.4 T) fMRI in awake marmosets (Callithrix jacchus) and demonstrate that these small, highly vocal New World primates possess a similar fronto-temporal network, including subcortical regions, that is activated by the presentation of conspecific vocalizations. The findings suggest that the human voice perception network has evolved from an ancestral vocalization-processing network that predates the separation of New and Old World primates.


Assuntos
Callithrix , Vocalização Animal , Animais , Humanos , Vocalização Animal/fisiologia , Percepção Auditiva/fisiologia , Imageamento por Ressonância Magnética , Encéfalo
7.
Commun Biol ; 6(1): 553, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217698

RESUMO

The observation of others' actions activates a network of temporal, parietal and premotor/prefrontal areas in macaque monkeys and humans. This action-observation network (AON) has been shown to play important roles in social action monitoring, learning by imitation, and social cognition in both species. It is unclear whether a similar network exists in New-World primates, which separated from Old-Word primates ~35 million years ago. Here we used ultra-high field fMRI at 9.4 T in awake common marmosets (Callithrix jacchus) while they watched videos depicting goal-directed (grasping food) or non-goal-directed actions. The observation of goal-directed actions activates a temporo-parieto-frontal network, including areas 6 and 45 in premotor/prefrontal cortices, areas PGa-IPa, FST and TE in occipito-temporal region and areas V6A, MIP, LIP and PG in the occipito-parietal cortex. These results show overlap with the humans and macaques' AON, demonstrating the existence of an evolutionarily conserved network that likely predates the separation of Old and New-World primates.


Assuntos
Callithrix , Córtex Motor , Humanos , Animais , Callithrix/fisiologia , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Temporal , Macaca
8.
Neuroimage ; 272: 120035, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948281

RESUMO

The default-mode network (DMN) is a distributed functional brain system integral for social and higher-order cognition in humans with implications in a myriad of neuropsychological disorders. In this study, we compared the functional architecture of the DMN between humans and marmosets to assess their similarities and differences using joint gradients. This approach permits simultaneous large-scale mapping of functional systems across the cortex of humans and marmosets, revealing evidence of putative homologies between them. In doing so, we find that the DMN architecture of the marmoset exhibits differences along its anterolateral-posterior axis. Specifically, the anterolateral node of the DMN (dorsolateral prefrontal cortex) displayed weak connections and inconsistent connection topographies as compared to its posterior DMN-nodes (posterior cingulate and posterior parietal cortices). We also present evidence that the marmoset medial prefrontal cortex and temporal lobe areas correspond to other macroscopical distributed functional systems that are not part of the DMN. Given the importance of the marmoset as a pre-clinical primate model for higher-order cognitive functioning and the DMN's relevance to cognition, our results suggest that the marmoset may lack the capacity to integrate neural information to subserve cortical dynamics that are necessary for supporting diverse cognitive demands.


Assuntos
Mapeamento Encefálico , Callithrix , Animais , Humanos , Mapeamento Encefálico/métodos , Rede de Modo Padrão , Imageamento por Ressonância Magnética/métodos , Encéfalo , Vias Neurais
9.
J Neurosci ; 43(19): 3477-3494, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001990

RESUMO

The correct identification of facial expressions is critical for understanding the intention of others during social communication in the daily life of all primates. Here we used ultra-high-field fMRI at 9.4 T to investigate the neural network activated by facial expressions in awake New World common marmosets from both male and female sex, and to determine the effect of facial motions on this network. We further explored how the face-patch network is involved in the processing of facial expressions. Our results show that dynamic and static facial expressions activate face patches in temporal and frontal areas (O, PV, PD, MD, AD, and PL) as well as in the amygdala, with stronger responses for negative faces, also associated with an increase of the respiration rates of the monkey. Processing of dynamic facial expressions involves an extended network recruiting additional regions not known to be part of the face-processing network, suggesting that face motions may facilitate the recognition of facial expressions. We report for the first time in New World marmosets that the perception and identification of changeable facial expressions, vital for social communication, recruit face-selective brain patches also involved in face detection processing and are associated with an increase of arousal.SIGNIFICANCE STATEMENT Recent research in humans and nonhuman primates has highlighted the importance to correctly recognize and process facial expressions to understand others' emotions in social interactions. The current study focuses on the fMRI responses of emotional facial expressions in the common marmoset (Callithrix jacchus), a New World primate species sharing several similarities of social behavior with humans. Our results reveal that temporal and frontal face patches are involved in both basic face detection and facial expression processing. The specific recruitment of these patches for negative faces associated with an increase of the arousal level show that marmosets process facial expressions of their congener, vital for social communication.


Assuntos
Callithrix , Expressão Facial , Humanos , Animais , Masculino , Feminino , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Emoções/fisiologia , Imageamento por Ressonância Magnética
10.
Cereb Cortex ; 33(7): 3523-3537, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35945687

RESUMO

Persistent delay-period activity in prefrontal cortex (PFC) has long been regarded as a neural signature of working memory (WM). Electrophysiological investigations in macaque PFC have provided much insight into WM mechanisms; however, a barrier to understanding is the fact that a portion of PFC lies buried within the principal sulcus in this species and is inaccessible for laminar electrophysiology or optical imaging. The relatively lissencephalic cortex of the New World common marmoset (Callithrix jacchus) circumvents such limitations. It remains unknown, however, whether marmoset PFC neurons exhibit persistent activity. Here, we addressed this gap by conducting wireless electrophysiological recordings in PFC of marmosets performing a delayed-match-to-location task on a home cage-based touchscreen system. As in macaques, marmoset PFC neurons exhibited sample-, delay-, and response-related activity that was directionally tuned and linked to correct task performance. Models constructed from population activity consistently and accurately predicted stimulus location throughout the delay period, supporting a framework of delay activity in which mnemonic representations are relatively stable in time. Taken together, our findings support the existence of common neural mechanisms underlying WM performance in PFC of macaques and marmosets and thus validate the marmoset as a suitable model animal for investigating the microcircuitry underlying WM.


Assuntos
Callithrix , Córtex Pré-Frontal , Animais , Callithrix/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Cerebral/fisiologia , Memória de Curto Prazo/fisiologia , Macaca
11.
J Neurosci Methods ; 383: 109737, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341968

RESUMO

BACKGROUND: The small common marmoset (Callithrix jacchus) is an ideal nonhuman primate for awake fMRI in ultra-high field small animal MRI scanners. However, it can often be challenging in task-based fMRI experiments to provide a robust stimulus within the MRI environment while using hardware (an RF coil and restraint system) that is compatible with awake imaging. NEW METHOD: Here we present an RF coil and restraint system that permits unimpeded access to an awake marmoset's head subsequent to immobilization, thereby permitting the setup of peripheral devices and stimuli proximal to the head. RESULTS: As an example application, an fMRI experiment probing whole-brain activation in response to marmoset vocalizations was conducted-this paradigm showed significant bilateral activation in the inferior colliculus, medial lateral geniculate nucleus, and auditory cortex. COMPARISON WITH EXISTING METHOD(S): The coil performance was evaluated and compared to a previously published restraint system with integrated RF coil. The image and temporal SNR were improved by up to 58 % and 27 %, respectively, in the peripheral cortex and by 30 % and 3 % in the centre of the brain. The restraint-system topology limited head motion to less than 100 µm of translation and 0.30° of rotation when measured over a 15-minute acquisition. CONCLUSIONS: The proposed hardware solution provides a versatile approach to awake-marmoset imaging and, as demonstrated, can facilitate task-based fMRI.


Assuntos
Callithrix , Imageamento por Ressonância Magnética , Animais , Callithrix/fisiologia , Imageamento por Ressonância Magnética/métodos , Vigília/fisiologia , Ondas de Rádio , Mapeamento Encefálico/métodos
12.
Commun Biol ; 5(1): 986, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115876

RESUMO

Robust frontoparietal connectivity is a defining feature of primate cortical organization. Whether mammals outside the primate order, such as rodents, possess similar frontoparietal functional connectivity organization is a controversial topic. Previous work has primarily focused on comparing mice and rats to primates. However, as these rodents are nocturnal and terrestrial, they rely much less on visual input than primates. Here, we investigated the functional cortical organization of grey squirrels which are diurnal and arboreal, thereby better resembling primate ecology. We used ultra-high field resting-state fMRI data to compute and compare the functional connectivity patterns of frontal regions in grey squirrels (Sciurus carolinensis), rats (Rattus norvegicus), and marmosets (Callithrix jacchus). We utilized a fingerprinting analysis to compare interareal patterns of functional connectivity from seeds across frontal cortex in all three species. The results show that grey squirrels, but not rats, possess a frontoparietal connectivity organization that resembles the connectivity pattern of marmoset lateral prefrontal cortical areas. Since grey squirrels and marmosets have acquired an arboreal way of life but show no common arboreal ancestor, the expansion of the visual system and the formation of a frontoparietal connectivity architecture might reflect convergent evolution driven by similar ecological niches in primates and tree squirrels.


Assuntos
Callithrix , Sciuridae , Animais , Lobo Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Córtex Pré-Frontal
13.
Cell Rep ; 39(2): 110669, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417698

RESUMO

The human default mode network (DMN) is engaged at rest and in cognitive states such as self-directed thoughts. Interconnected homologous cortical areas in primates constitute a network considered as the equivalent. Here, based on a cross-species comparison of the DMN between humans and non-hominoid primates (macaques, marmosets, and mouse lemurs), we report major dissimilarities in connectivity profiles. Most importantly, the medial prefrontal cortex (mPFC) of non-hominoid primates is poorly engaged with the posterior cingulate cortex (PCC), though strong correlated activity between the human PCC and the mPFC is a key feature of the human DMN. Instead, a fronto-temporal resting-state network involving the mPFC was detected consistently across non-hominoid primate species. These common functional features shared between non-hominoid primates but not with humans suggest a substantial gap in the organization of the primate's DMN and its associated cognitive functions.


Assuntos
Mapeamento Encefálico , Encéfalo , Animais , Callithrix , Rede de Modo Padrão , Imageamento por Ressonância Magnética , Vias Neurais
14.
Neuroimage ; 252: 119030, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217206

RESUMO

The common marmoset (Callithrix jacchus) is quickly gaining traction as a premier neuroscientific model. However, considerable progress is still needed in understanding the functional and structural organization of the marmoset brain to rival that documented in longstanding preclinical model species, like mice, rats, and Old World primates. To accelerate such progress, we present the Marmoset Functional Brain Connectivity Resource (marmosetbrainconnectome.org), currently consisting of over 70 h of resting-state fMRI (RS-fMRI) data acquired at 500 µm isotropic resolution from 31 fully awake marmosets in a common stereotactic space. Three-dimensional functional connectivity (FC) maps for every cortical and subcortical gray matter voxel are stored online. Users can instantaneously view, manipulate, and download any whole-brain functional connectivity (FC) topology (at the subject- or group-level) along with the raw datasets and preprocessing code. Importantly, researchers can use this resource to test hypotheses about FC directly - with no additional analyses required - yielding whole-brain correlations for any gray matter voxel on demand. We demonstrate the resource's utility for presurgical planning and comparison with tracer-based neuronal connectivity as proof of concept. Complementing existing structural connectivity resources for the marmoset brain, the Marmoset Functional Brain Connectivity Resource affords users the distinct advantage of exploring the connectivity of any voxel in the marmoset brain, not limited to injection sites nor constrained by regional atlases. With the entire raw database (RS-fMRI and structural images) and preprocessing code openly available for download and use, we expect this resource to be broadly valuable to test novel hypotheses about the functional organization of the marmoset brain.


Assuntos
Callithrix , Vigília , Acesso à Informação , Animais , Encéfalo/fisiologia , Callithrix/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Ratos
15.
Cereb Cortex ; 32(9): 1965-1977, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34515315

RESUMO

Frontoparietal networks contribute to complex cognitive functions in humans and macaques, such as working memory, attention, task-switching, response suppression, grasping, reaching, and eye movement control. However, there has been no comprehensive examination of the functional organization of frontoparietal networks using functional magnetic resonance imaging in the New World common marmoset monkey (Callithrix jacchus), which is now widely recognized as a powerful nonhuman primate experimental animal. In this study, we employed hierarchical clustering of interareal blood oxygen level-dependent signals to investigate the hypothesis that the organization of the frontoparietal cortex in the marmoset follows the organizational principles of the macaque frontoparietal system. We found that the posterior part of the lateral frontal cortex (premotor regions) was functionally connected to the anterior parietal areas, while more anterior frontal regions (frontal eye field [FEF]) were connected to more posterior parietal areas (the region around the lateral intraparietal area [LIP]). These overarching patterns of interareal organization are consistent with a recent macaque study. These findings demonstrate parallel frontoparietal processing streams in marmosets and support the functional similarities of FEF-LIP and premotor-anterior parietal pathways between marmoset and macaque.


Assuntos
Callithrix , Imageamento por Ressonância Magnética , Animais , Mapeamento Encefálico , Callithrix/fisiologia , Córtex Cerebral , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiologia , Macaca , Vigília
16.
Nat Commun ; 12(1): 6608, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785685

RESUMO

Social cognition is a dynamic process that requires the perception and integration of a complex set of idiosyncratic features between interacting conspecifics. Here we present a method for simultaneously measuring the whole-brain activation of two socially interacting marmoset monkeys using functional magnetic resonance imaging. MRI hardware (a radiofrequency coil and peripheral devices) and image-processing pipelines were developed to assess brain responses to socialization, both on an intra-brain and inter-brain level. Notably, the brain activation of a marmoset when viewing a second marmoset in-person versus when viewing a pre-recorded video of the same marmoset-i.e., when either capable or incapable of socially interacting with a visible conspecific-demonstrates increased activation in the face-patch network. This method enables a wide range of possibilities for potentially studying social function and dysfunction in a non-human primate model.


Assuntos
Encéfalo/fisiologia , Callithrix/fisiologia , Imageamento por Ressonância Magnética/métodos , Vigília , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Neurociência Cognitiva , Face , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Masculino
17.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493677

RESUMO

The common marmoset has enormous promise as a nonhuman primate model of human brain functions. While resting-state functional MRI (fMRI) has provided evidence for a similar organization of marmoset and human cortices, the technique cannot be used to map the functional correspondences of brain regions between species. This limitation can be overcome by movie-driven fMRI (md-fMRI), which has become a popular tool for noninvasively mapping the neural patterns generated by rich and naturalistic stimulation. Here, we used md-fMRI in marmosets and humans to identify whole-brain functional correspondences between the two primate species. In particular, we describe functional correlates for the well-known human face, body, and scene patches in marmosets. We find that these networks have a similar organization in both species, suggesting a largely conserved organization of higher-order visual areas between New World marmoset monkeys and humans. However, while face patches in humans and marmosets were activated by marmoset faces, only human face patches responded to the faces of other animals. Together, the results demonstrate that higher-order visual processing might be a conserved feature between humans and New World marmoset monkeys but that small, potentially important functional differences exist.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Callithrix/fisiologia , Face/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Percepção Visual/fisiologia , Adulto , Animais , Encéfalo/anatomia & histologia , Face/anatomia & histologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
J Neurophysiol ; 126(1): 330-339, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133232

RESUMO

Faces are stimuli of critical importance for primates. The common marmoset (Callithrix jacchus) is a promising model for investigations of face processing, as this species possesses oculomotor and face-processing networks resembling those of macaques and humans. Face processing is often disrupted in neuropsychiatric conditions such as schizophrenia (SZ), and thus, it is important to recapitulate underlying circuitry dysfunction preclinically. The N-methyl-d-aspartate (NMDA) noncompetitive antagonist ketamine has been used extensively to model the cognitive symptoms of SZ. Here, we investigated the effects of a subanesthetic dose of ketamine on oculomotor behavior in marmosets during face viewing. Four marmosets received systemic ketamine or saline injections while viewing phase-scrambled or intact videos of conspecifics' faces. To evaluate effects of ketamine on scan paths during face viewing, we identified regions of interest in each face video and classified locations of saccade onsets and landing positions within these areas. A preference for the snout over eye regions was observed following ketamine administration. In addition, regions in which saccades landed could be significantly predicted by saccade onset region in the saline but not the ketamine condition. Effects on saccade control were limited to an increase in saccade peak velocity in all conditions and a reduction in saccade amplitudes during viewing of scrambled videos. Thus, ketamine induced a significant disruption of scan paths during viewing of conspecific faces but limited effects on saccade motor control. These findings support the use of ketamine in marmosets for investigating changes in neural circuits underlying social cognition in neuropsychiatric disorders.NEW & NOTEWORTHY Face processing, an important social cognitive ability, is impaired in neuropsychiatric conditions such as schizophrenia. The highly social common marmoset model presents an opportunity to investigate these impairments. We administered subanesthetic doses of ketamine to marmosets to model the cognitive symptoms of schizophrenia. We observed a disruption of scan paths during viewing of conspecifics' faces. These findings support the use of ketamine in marmosets as a model for investigating social cognition in neuropsychiatric disorders.


Assuntos
Antagonistas de Aminoácidos Excitatórios/toxicidade , Expressão Facial , Fixação Ocular/efeitos dos fármacos , Ketamina/toxicidade , Estimulação Luminosa/métodos , Cognição Social , Animais , Callithrix , Feminino , Fixação Ocular/fisiologia , Masculino , Movimentos Sacádicos/efeitos dos fármacos , Movimentos Sacádicos/fisiologia
19.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33789926

RESUMO

Mammalian orienting behavior consists of coordinated movements of the eyes, head, pinnae, vibrissae, or body to attend to an external stimulus. The present study aimed to develop a novel operant task using a touch-screen system to measure spatial attention. In this task, rats were trained to nose-poke a light stimulus presented in one of three locations. The stimulus was presented more frequently in the center location to develop spatial attention bias toward the center stimulus. Changes in orienting responses were detected by measuring the animals' response accuracy and latency to stimuli at the lateral locations, following reversible unilateral chemogenetic inactivation of the superior colliculus (SC). Additionally, spontaneous turning and rotation behavior was measured using an open-field test (OFT). Our results show that right SC inactivation significantly increased the whole body turn angle in the OFT, in line with previous literature that indicated an ipsiversive orientating bias and the presence of contralateral neglect following unilateral SC lesions. In the touch screen orienting task, unilateral SC inactivation significantly increased bias toward the ipsilateral side, as measured by response frequency in various experimental conditions, and a very large left-shift of a respective psychometric function. Our results demonstrate that this novel touchscreen task is able to detect changes in spatial attention and orienting responses because of e.g. experimental manipulations or injury with very high sensitivity, while taking advantage of the touch screen technology that allows for high transferability of the task between labs and for open-source data sharing through https://www.mousebytes.ca.


Assuntos
Roedores , Colículos Superiores , Animais , Ratos , Vibrissas
20.
Front Neural Circuits ; 15: 648624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790746

RESUMO

Neuromodulation by acetylcholine plays a vital role in shaping the physiology and functions of cerebral cortex. Cholinergic neuromodulation influences brain-state transitions, controls the gating of cortical sensory stimulus responses, and has been shown to influence the generation and maintenance of persistent activity in prefrontal cortex. Here we review our current understanding of the role of muscarinic cholinergic receptors in primate prefrontal cortex during its engagement in the performance of working memory tasks. We summarize the localization of muscarinic receptors in prefrontal cortex, review the effects of muscarinic neuromodulation on arousal, working memory and cognitive control tasks, and describe the effects of muscarinic M1 receptor stimulation and blockade on the generation and maintenance of persistent activity of prefrontal neurons encoding working memory representations. Recent studies describing the pharmacological effects of M1 receptors on prefrontal persistent activity demonstrate the heterogeneity of muscarinic actions and delineate unexpected modulatory effects discovered in primate prefrontal cortex when compared with studies in rodents. Understanding the underlying mechanisms by which muscarinic receptors regulate prefrontal cognitive control circuitry will inform the search of muscarinic-based therapeutic targets in the treatment of neuropsychiatric disorders.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal , Animais , Neurônios , Primatas , Receptores Muscarínicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...